

WS3413 Active PFC Non-isolated Buck LED Driver

Features

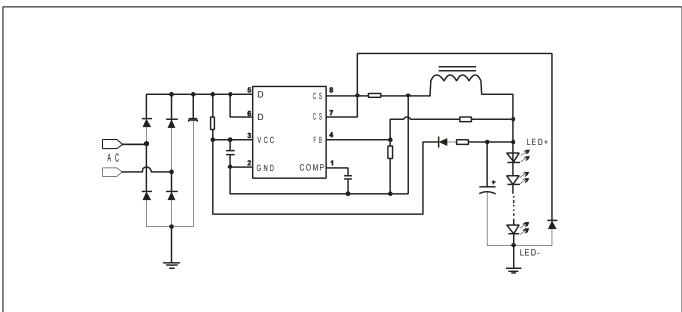
- High Power Factor Correction, Low Total Harmonic Distortion
- Dynamic Temperature Compensation
- 500V Power MOSFET Integrated
- No Auxiliary Winding For Supplying
- DIP8 Package, Up To 260mA Output Current
- Valley Switching, High efficiency, Low EMI
- Automatic Compensate the Inductance Variation
- Automatic Adapt to the Change of Output Voltage
- LED Short Circuit Protection
- Over Voltage Protection
- Over Temperature Protection
- Open Circuit Protection
- Few External Components

General Description

The WS3413 is designed for active PFC non-isolated buck LED driver. It operates at valley switching mode with high efficiency, low EMI and High PF. The output current automatically adapt to the variation of the inductance and the output voltage. The truly constant current LED is realized.

The WS3413 integrates 500V power MOSFET, using DIP8 package, producing up to 260mA output current. It can achieve excellent constant current performance with very few external components.

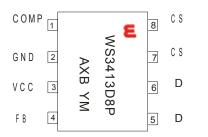
The WS3413 offers rich protection functions, including over voltage protection, LED short circuit protection, cycle by cycle current limiting, dynamic temperature compensation, over temperature protection and soft start.


WS3413 consumes very low start current and operation current, driving LED efficiently under universal AC input(85VAC~265VAC).

WS3413 is available in DIP8 package.

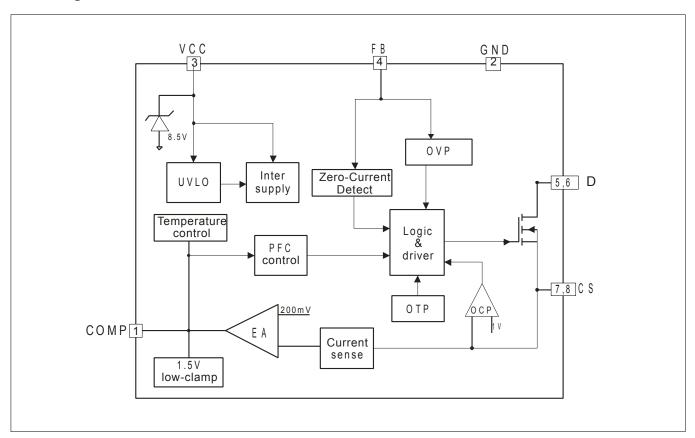
Applications

LED Driver Supply


Typical Application Circuit

Pin Definition and Device Marking

WS3413 is available in DIP-8 package.



WS3413D8P: Product code
A: Product Code
X: Internal Code
B: Area Code
YM: Year, Month

Pin Function Description

Pin Name	Pin NO.	Description		
COMP	1	Loop compensation, with a cap to GND.		
GND	2	Ground		
VCC	3	Power supply		
FB	4	Feedback signal input.		
D	5	Internal HV power MOSFET drain		
D	6	Internal HV power MOSFET drain		
CS	7	Current sense input, connect to internal HV power MOSFET source		
CS	8	Current sense input, connect to internal HV power MOSFET source		

Block Diagram

Ordering Information

Package	Part Number	Marking
8-Pin DIP-8, Pb-free	WS3413D8P	WS3413D8P

Recommended Operating Condition

symbol	parameter	value	units
I _{LED}	Output LED current	< 260	mA

Absolute Maximum Ratings

symbol	parameter	Range	Units
V _{DS}	Internal HV MOSFET drain voltage	-0.3~500	V
VCC	Power Supply	-0.3~8.5	V
V _{CS}	Current sense pin input voltage	-0.3~7	V
V _{FB}	Feedback voltage input	-0.3~7	V
V _{COMP}	Loop Compensation Pin voltage	-0.3~7	V
P _{DMAX}	Power dissipation	0.5	W
TJ	Max. Operating junction temperature	150	°C
T _{STG}	Max./Min. Storage temperature range	-55~150	°C

Note: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. Under "recommended operating conditions" the device operation is assured, but some particular parameter may not be achieved.

Electrical Characteristics (Unless otherwise specified, $T_A=25$ °C, VCC=8V)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Supply Voltage	Section					1
Vcc_clamp	VCC Clamping Voltage		7.8	8.5	9.3	V
Icc_clamp	VCC Clamping Current				5	mA
VCC_ST	VCC Start Up Voltage	VCC Rise		7.5		V
	VCC Under Voltage			4.5	v	
Vuvlo_HYS	Latch Out Hysteresis	VCC Falling		1.5		v
lst	Start Up Current	VCC <vcc_st-0.5v< td=""><td></td><td>70</td><td>100</td><td>uA</td></vcc_st-0.5v<>		70	100	uA
Іор	Operation Current			400		uA
Current Senso	r Section					
Vocp	Current Sensor Voltage Threshold			1		V
TLEB	Leading Edge Blanking			350		ns
TDELAY	Turn Off Delay Time			200		ns
Loop Compens	sation Section					
VREF	Internal Reference Voltage		194	200	206	mV
VCL	Comp Low Clamp Voltage			1.5		V
VCH				4		V
Internal Driver	Secion					
Toff_min	Min. Demagnetization Time			3		us
Ton_max	Max. On Time			20		us
Feedback inpu	t Section					
VFB	OVP Threshold Voltage			1.6		V
VZCD	Zero Crossing Checking Threshold			0.2		V
Internal HV MC	DSFET					
RDSON	HV MOS ON Resistance				3.5	ohm
VDS	Drain to Source voltage		500			V
Over Temperat	ture Section					
TSD	Thermal Shut Down Temperature			160		°C
TSD_HYS	Thermal Shut Down Hysteresis			30		°C

Function Description

The WS3413 is designed for active PFC non-isolated buck LED driver, which integrates 500V power MOSFET and using DIP8 package, producing up to 260mA output current. It operates under valley switching mode, automatically adapting to the variation of the inductance and the output voltage. It can achieve excellent constant current performance with very few external components.

Start up

The start current is very low, Typ. 70uA(Max. 100uA). Under the design system of 85VAC, the startup resistor is:

$$R = \frac{85 * \sqrt{2}}{100} = 1.2M$$

Chip Supply

After startup, the output voltage should supply the chip, rectifier diodes D6 need to use fast recovery diodes.Current limiting resistor R4 is calculated as:

$$R_4 = (1 - D) * \frac{V_{LED} - 9}{400 uA}$$

Where, D is duty cycle, 400uA is the normal operation current of the chip, Vled is output load voltage. The consumption of R4 is:

$$P_{R4} = \frac{(V_{LED} - 9)^2}{R_4} * (1 - D)$$

For example:

Requirements:180~260V input voltage, 36~80V output, 240mA output current.

The R4 design of above program should be met:

1. Supply Problem when Min. input AC voltage 180V and Min. output voltage 36V(which is the weakest power supply): D=36/180/1.414=0.141,R4= $(1-0.141)^*(36-9)/400uA=58k$

2.Power consumption problem of R4 when Max. input AC voltage 260V and Max. output voltage 80V(which is the strongest power supply):

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS

D=80/260/1.414=0.218

The power consumption of R4:

P=(80-9)*(80-9)/58*(1-0.218)=68mW

Sence Resistor

The WS3413 is designed for active PFC non-isolated buck LED driver. It operates under valley switching mode and can achieve high accuracy constant current performance with very few external components. The peak current of inductor is continuous detected. CS terminal is connected internal of the chip, and compared with the internal 200mV. Internal Amplifier's output COMP adjust the on-time, making the average value os CS equal to 200mV after the system is stable. In addition, a 1V cycle-by-cycle over current protection is set up inside CS pin.

LED output current:

$$I_{LED} = \frac{0.2V}{R_{CS}}$$

FB Voltage Detection

FB voltage determines the working status of the system, when FB is greater then 1.6V(typ.), WS3413 will automatically considered as output over voltage protection. The system will enter extremely energy efficient hiccup mode. Output over voltage protection voltage as follows:

$$V_{OVP} = 1.6 * \frac{R_2 + R_3}{R_3}$$

R2,R3,please refer to the typical application diagram, in which R3=1k(no more than 2k). use 1.3 instead of constant 1.6 in the above formula in the design of system. Assuming Vovp=90V, we got R2=56k from the above formula, choosing 60k for R2 (larger as far as possible).

Because VFB2 is between 1.3 and 1.9, choose 1.9 to calculate the withstand voltage of C4,

Vovp=1.9*(1+60)/1=116V

The withstand voltage of C4 shoule larger than the above value, 200V capacitor could be used.

The WS3413 uses the patent source driver structure. The typical operation current is as low as 200uA, the auxiliary winding is not need. So the system design is simple and the cost is low.

WS3413 will automatic detect the output voltage when enters hiccup mode; and will re-enter the normal working state when the output voltage is lower than Vovp.

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS

WINSEMI MICROELECTRONICS

Output Open(Short) protection

Output open/short protection is integrated inside WS3413. Once output open/short circuit is detected, the system will automatic enter hiccup mode until the protection signal disappear.

Over Temperature Automatic adjustment of output current

WS3413 has over temperature regulating function, gradually reducing the output current when the power is over temperature, so as to control the output power and the temperature rise, keeping the power temperature in a setting value in order to improving the reliability of the system. The starting regulation temperature is 135°C.

Input Filter Capacitor

In order to obtain high PF value, the input capacitor can not be too large. 10-100nF is recommended.

Power Factor Correction

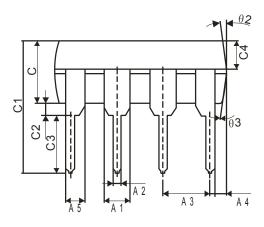
Active PFC control circuit is integrated in WS3413, which can get high PF value and low THD.

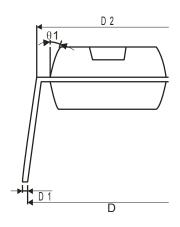
PCB Design

The following guidelines should be followed in WS3413 PCB layout:

Bypass Capacitor: The bypass capacitor on VCC pin should be as close as possible to the VCC and GND pins.

Ground Path: The power ground path for current sense should be short, and the power ground path should be separated from small signal ground path before the negative node of the bulk capacitor.


The Area of Power Loop: The area of power loop should be as small as possible to reduce EMI radiation.


And the controller should be placed away from the heat generator, such as the power diode.

WINSEMI MICROELECTRONICS

Package Information DIP-8 Package Outline Dimensions

	< <u> </u>	
<u>е</u> –		
•		

Winsemi						
Combal	Dimensions	in Millimeters	Dimension	s in Inches		
Symbol	Min	Max	Min	Max		
А	9.00	9.50	0.354	0.374		
В	6.10	6.60	0.240	0.260		
С	3.0	3.4	0.118	0.134		
A1	1.474	1.574	0.058	0.062		
A2	0.41	0.53	0.016	0.021		
A3	2.44	2.64	0.096	0.104		
A4	0.51	0.51TYP				
A5	0.99	TYP	0.04	TYP		
C1	6.6	7.30	0.260	0.287		
C2	0.50	TYP	0.02	D2TYP		
C3	3.00	3.40	0.118	0.134		
C4	1.47	1.65	0.058	0.065		
D	7.62	9.3	0.300	0.366		
D1	0.24	0.32	0.009	0.013		
D2	7.62TYP 0.3TYP			TYP		

NOTE:

1.We strongly recommend customers check carefully on the trademark when buying our product, if there is any question, please don't be hesitate to contact us.

2.Please do not exceed the absolute maximum ratings of the device when circuit designing.

3. Winsemi Microelectronics Co., Ltd reserved the right to make changes in this specification sheet and is subject to change without prior notice.

CONTACT:

Winsemi Microelectronics Co., Ltd.

ADD:Futian District, ShenZhen Tian An Cyber Tech Plaza two East Wing 1002 Post Code : 518040 Tel : +86-755-8250 6288 FAX : +86-755-8250 6299 Web Site : <u>www.winsemi.com</u>